Uncoupling of the DNA breaking and rejoining steps of Escherichia coli type I DNA topoisomerase. Demonstration of an active covalent protein-DNA complex.

نویسنده

  • Y C Tse-Dinh
چکیده

DNA topoisomerases have been shown to cleave DNA phosphodiester bond and simultaneously become linked to the DNA at the cleavage site via a phosphotyrosine linkage (Tse, Y.-C., Kirkegaard, K., and Wang, J. C. (1980) J. Biol. Chem. 255, 5560-5565). For prokaryotic DNA topoisomerases, this is observed only when denaturant or protease is added to the topoisomerase-DNA incubation mixture. Previous attempts to reform DNA phosphodiester bonds from the covalent protein-DNA complex have been unsuccessful. Using oligonucleotides as substrates, the cleavage reaction of Escherichia coli DNA topoisomerase I occurs spontaneously (Tse-Dinh, Y.-C., McCarron, B. G. H., Arentzen, R., and Chowdhry, V. (1983) Nucleic Acids Res. 11, 8691-8701). Upon reaction with oligo(dA) labeled with 32P using terminal transferase and [alpha-32P]dATP, the enzyme becomes covalently linked to the 32P-labeled oligonucleotide. This 32P label can then be transferred to the 3'-OH end of a linear or nicked duplex DNA molecule subsequently added to the reaction mixture. This phosphodiester bond rejoining reaction can occur at a recessed, blunt, or protruding 3'-end of double-stranded DNA. It requires magnesium ions. These observations suggest that the covalent protein-DNA complex is a true intermediate during topoisomerization. Implications on the structure of prokaryotic type I DNA topoisomerases as compared to their eukaryotic counterparts are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I.

DNA topoisomerases control DNA topology by breaking and rejoining DNA strands via covalent complexes with cleaved DNA substrate as catalytic intermediates. Here we report the structure of Escherichia coli topoisomerase I catalytic domain (residues 2-695) in covalent complex with a cleaved single-stranded oligonucleotide substrate, refined to 2.3-Å resolution. The enzyme-substrate intermediate f...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

Mutation adjacent to the active site tyrosine can enhance DNA cleavage and cell killing by the TOPRIM Gly to Ser mutant of bacterial topoisomerase I

The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pesti...

متن کامل

Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA.

The cleavage of a DNA phosphodiester bond by Escherichia coli DNA topoisomerase I and the simultaneous covalent linkage of the enzyme to the 5’-phosphoryl group of the DNA at the cleavage site have been reported previously (Depew, R. E., Liu, L. F., and Wang, J. C. (1978) J. Biol. Chem 253, 511-518; Liu, L. F., and Wang, J. C. (1979) J. Biol. Chem 254, 11082-11088). With either E. coli or Micmc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 23  شماره 

صفحات  -

تاریخ انتشار 1986